
Using costs as meta-controls

(RL terminology: Using rewards as meta-actions)

Emo Todorov

University of Washington
Roboti LLC

algorithm

problem

representation
already good,

not getting better

not too important,
as long as it is

flexible enough

this is where the action is
(convexity, IP methods)

Optimization landscape

we should (re) define the problem so as to help the algorithm

Where does reward come from?

Brains have elaborate neural mechanisms to recognize situations that are good
for the organism, and deliver reward internally. This is likely because external
rewards are too sparse (in time) to be useful for learning – consider a
predator chasing pray and only getting reward upon eating it.

Similarly, robots must have the ability to compute reward internally,
and this requires a perception system.
Demos suggesting otherwise involve tasks where success can be measured by
simple sensors, however such tasks can be performed by equally simple actuators,
in which case we don’t even need robots.

Reward used for learning does not come from the environment.
A real-world agent needs to compute its own reward internally.
This computation should approximate some external reward,
but on a longer timescale (evolution for brains, design for robots).

In an effort to be model-free, RL treats
reward as being generated externally.

This requires an oracle.

Abstract goal: leave the room

Composite cost: - minimize distance to target (outside room)

- minimize energy

- avoid collisions

- if sitting in chair, get up

- if up, walk with symmetric gait

- if near door and door closed, open door

Costs as meta-controls

height adjustment,
collisions avoidance

limit cycle,
gait symmetry

multiple
stability costs

sequence of
sub-goals

KL divergence

CIO
(and others)

ensemble

proximity,
synergy

imitation

Cost terms that make optimization work

Instead of pretending that the goal and the cost are the same thing,
we should exploit composite cost functions to simplify the problem.

Language for cost functions

Abstract goal Composite cost Optimizer

This resembles a mixture-of-experts, but here we use it to represent
the problem instead of the solution.

Q functions as meta-controls

MuJoCo physics

Forward dynamics: convex optimization

Inverse dynamics: analytical solution

Adding task costs to the physics cost

Physics:

Control, non-physical (QP, CIO):

Control, physical:

Can we avoid nested optimization without violating physics?

Goal-directed dynamics (GDD)

Acceleration constraint:

Regularization/control cost: where

nested

not nested!

GDD applied to MuJoCo physics

Optimization problem (from definition)

Objective:

Gradient:

Hessian:

Non-convex non-smooth constrained optimization problem.

Primal-dual method with exact line search specific to MuJoCo.

Relation to forward and inverse dynamics

forward: applied force → acceleration, constraint force

inverse: acceleration → applied force, constraint force

GDD: cost → acceleration, applied force, constraint force

Contacts make the relation between force and acceleration piece-wise linear.
With N active contacts we have 3N pieces.

GDD optimizes over all pieces, instead of assuming a fixed piece.

Examples

GDD cost with three terms
(heuristic Q function):

- virtual damping on all joints

- virtual spring-damper between selected
body and user-controlled spatial target

- optional desired pose for grasping

Numerical results

Acceleration-based Dynamic Programming

Discrete-time integration

Running cost

Bellman equation

The minimization step in the Bellman equation is equivalent to GDD with

Since Q* = p + ||g|| + V*, optimizing Q* over actions is equivalent to GDD

Applications of GDD

Generalization of QP-based control and feature-based control

Trajectory optimization with acceleration-based formulation (AILQR)

Q-learning with optimization over actions built into MuJoCo

Training neural network controllers that output accelerations

