Introduction to MDPs

CSE599G: Deep Reinforcement Learning

Aravind Rajeswaran and Kendall Lowrey

University of Washington Seattle
March 28, 2018

Introduction to MDPs

e Formally describes a framework for Reinforcement Learning

e Avery large fraction of problems can be modelled as MDPs

O

Most of robotics deals with MDPs (or POMDPs)

o

Chemical processes, power grids, manufacturing systems etc. in engineering

o

Inventory management, queues etc. in operations research

O

R2 (White ‘93) surveys a number of (old but relevant) applications of MDPs

e MDPs assume full observability and world without “intent”. Some extensions

to model these are POMDPs and Markov Games (more on these later)

Parts of an MDP

e Formally, MDPis a tuple: M = (S, A, R, P, po,7,T)
o 8 = states (joint positions in robot, concentrations in chemical reaction)

o A = actions (motor torques, how much chemical to add)

o R(S, CL) — R is the “reward” function

o 7) =]P)(S/ ’ 8, a) is the transition dynamics
o pO = initial state distribution (i.e. state at time = 0)

o T = horizon (how long does the MDP last)

o ’7/ = discount factor (immediate rewards are worth a bit more than future ones)

Markov Property

“Future is independent of the past given the present”

e State is a sufficient statistic to summarize the system and to make
decisions to control it.
o Let H; = (sy,agy,S1,aq, ... S;) denote the history till time t.
e Markov property implies that:
P(s¢y1|He ar) = P(Se41lSe ar)

e For example, in Newtonian physics, state = positions + velocity

Closer look at the structure

O = state —> = you choose

® - (state, action) - = environment dictates

Closer look at the structure

R(s,a,)

Closer look at the structure

R(s,a,)

Closer look at the structure

What is the goal for the agent?

e The agent’s decision making rule is called “policy” (m)
n(als) =P(A=a|S =5)
e We will mostly use a “randomized” decision making rule
e The policy fully defines the behavior of the agent.
e Fix the policy => MDP becomes a stochastic dynamical system that evolves in
some way and generates rewards.
e Goalis to find policy such that the resulting dynamical system produces

maximum reward (i.e. it behaves in a desirable way).

What is the goal for the agent?

Objective function for this problem:

T
N(T) = Bgmn()se)sera~P(ISt @)so~pol z Y R(st,ar)]
t=0

So that the optimal policy is defined as
n* = argmax, n(mw)
Two important sub problems:
e Given a policy, determine how good it is (policy evaluation)

e Given a policy, make it better (policy improvement)

Types of MDPs

e Time: discrete time MDP vs continuous time MDP (requires PDEs)
e States and Actions: finite state/action MDPs vs real-valued states and

actions (continuous MDPs).

There is a distinction between “small + finite” vs “finite” (could be huge)
e Dynamics: Deterministic vs stochastic
e Horizon: finite horizon vs infinite horizon
Extensions to MDPs:
e POMDP: state not fully known(noisy sensors, unobservable quantities)
e Markov Games: P(s;41|St, s, €¢) Where ¢; is action by some other

agent that has some “intent”.

Value Functions

e How to measure long term performance of a policy?
Run it on the environment. Too expensive, we would like data reuse.

e We will define a quantity that summarizes the long term performance,
and attempt to learn this quantity.

e Define the value function of policy as:

T
Vn(S, t) - [Eat”"”(-|St')'5t’+1~IP)(-|Stl, Cltl)[Z yt _tR(St” at') | St = S]
t'=t

e Depends on the policy, state, and time (in finite horizon case).

Value Functions

e Similarly, we can also define an action-value function

T
Q" (s,a,t) =]Eatr~n(.|Stl),st/+1~]P’(.|Stl, atr)[z y" T'R(syap) | se = 5,0, = a]
t'=t
e Note that every policy including m* has an associated V™ and Q™
e If we find the corresponding “optimal” value or action-value functions,
we can obtain the optimal policy using one step look ahead.
n*(s) = argmax, E[R(s,a) + yV*(s')]

n*(s) = argmax, Q*(s,a)

Value Functions

m*(s) = argmax, E[R(s,a) + yV*(s')]

n*(s) = argmax, Q*(s,a)

Value Functions

e Value functions help to abstract away the temporal nature of the

problem, by summarizing the long term performance.

State value State-Action value
Given policy VT (s) Q" (s,a)
Optimal policy V*(s) Q*(s,a)

e But so far, we have only replaced one unknown with another
unknown. Are there better ways to learn the value functions than

Monte Carlo samples? Yes!

