
Introduction to MDPs
CSE599G: Deep Reinforcement Learning

Aravind Rajeswaran and Kendall Lowrey

University of Washington Seattle

March 28, 2018

Introduction to MDPs

● Formally describes a framework for Reinforcement Learning

● A very large fraction of problems can be modelled as MDPs

○ Most of robotics deals with MDPs (or POMDPs)

○ Chemical processes, power grids, manufacturing systems etc. in engineering

○ Inventory management, queues etc. in operations research

○ R2 (White ‘93) surveys a number of (old but relevant) applications of MDPs

● MDPs assume full observability and world without “intent”. Some extensions

to model these are POMDPs and Markov Games (more on these later)

Parts of an MDP

● Formally, MDP is a tuple:

○ = states (joint positions in robot, concentrations in chemical reaction)

○ = actions (motor torques, how much chemical to add)

○ is the “reward” function

○ is the transition dynamics

○ = initial state distribution (i.e. state at time = 0)

○ = horizon (how long does the MDP last)

○ = discount factor (immediate rewards are worth a bit more than future ones)

M = hS,A,R,P, ⇢0, �, T i

S
A
R(s, a) ! R

P ⌘ P(s0|s, a)
⇢0

T
�

Markov Property

“ Future is independent of the past given the present”

● State is a sufficient statistic to summarize the system and to make

decisions to control it.

● Let !" = $%, '%, $(, '(, … $" denote the history till time t.

● Markov property implies that:

* $"+(!", '" = *($"+(|$", '")
● For example, in Newtonian physics, state = positions + velocity

Closer look at the structure

= state à = you choose

= (state, action) à = environment dictates

!" !#

$

% $, !" % $, !#

0.8 0.2 0.6 0.4

Closer look at the structure

!"

#

$ #, !"

Closer look at the structure

!"

#

$ #, !"

Closer look at the structure

!"

#

$ #, !"

0.6 0.4

What is the goal for the agent?

● The agent’s decision making rule is called “policy” (!)

! " # = ℙ(' = "|) = #)
● We will mostly use a “randomized” decision making rule

● The policy fully defines the behavior of the agent.

● Fix the policy => MDP becomes a stochastic dynamical system that evolves in

some way and generates rewards.

● Goal is to find policy such that the resulting dynamical system produces

maximum reward (i.e. it behaves in a desirable way).

What is the goal for the agent?

Objective function for this problem:

! " = $%&∼(. *+ ,-&./∼ℙ . *+, 1+ ,-2∼32[5
+67

8
9+: *+, 1+]

So that the optimal policy is defined as

"∗ = 1=>?1@(!(")
Two important sub problems:

● Given a policy, determine how good it is (policy evaluation)

● Given a policy, make it better (policy improvement)

Types of MDPs

● Time: discrete time MDP vs continuous time MDP (requires PDEs)

● States and Actions: finite state/action MDPs vs real-valued states and

actions (continuous MDPs).
There is a distinction between “small + finite” vs “finite” (could be huge)

● Dynamics: Deterministic vs stochastic

● Horizon: finite horizon vs infinite horizon

Extensions to MDPs:

● POMDP: state not fully known(noisy sensors, unobservable quantities)

● Markov Games: ℙ(#$%&|#$,)$, *$) where *$ is action by some other

agent that has some “intent”.

Value Functions

● How to measure long term performance of a policy?

Run it on the environment. Too expensive, we would like data reuse.

● We will define a quantity that summarizes the long term performance,

and attempt to learn this quantity.

● Define the value function of policy as:

V"($, &) =)*+,∼" . $/, ,0+,12∼ℙ . $/,, 4/, [6
/,7/

8
9/,:/; $/,, 4/, | $/ = $]

● Depends on the policy, state, and time (in finite horizon case).

Value Functions

● Similarly, we can also define an action-value function

● Note that every policy including !∗ has an associated #$ and %$

● If we find the corresponding “optimal” value or action-value functions,

we can obtain the optimal policy using one step look ahead.

!∗ & = ()*+(,- . / &, (+ 2#∗ &3

!∗ & = ()*+(,- %∗(&, ()

Q$(&, (, 7) = .-89∼$. &<9 ,=89>?∼ℙ . &<9 , (<9 [B
<9C<

D
2<9E</ &<9, (<9 | &< = &, (< = (]

Value Functions

!∗ # = %&'(%)* + , #, % + /0∗ #1

!∗ # = %&'(%)* 2∗(#, %)

Value Functions

● Value functions help to abstract away the temporal nature of the

problem, by summarizing the long term performance.

● But so far, we have only replaced one unknown with another

unknown. Are there better ways to learn the value functions than

Monte Carlo samples? Yes!

State value State-Action value

Given policy !"($) &"($, ()

Optimal policy !∗($) &∗($, ()

