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Why Trajectory Optimization?
Black Box Optimization: put in some initial values, get out results (hopefully).

Reinforcement Learning: exploit MDP structure to be more efficient.

Model based RL (aka. Trajectory Optimization): exploit information about the 
model/system/environment to be more efficient than model-free RL.

Assuming we optimize good trajectories, run-time performance depends on 
quality of model used.



Trajectory Optimization
MDP(S, A, R, s’<-P(s,a))

In trajectory optimization, we also have states and actions, but different notation:

MDP(X, U, C, F(x,u)) where function F is known.

In model free RL, the best we can do is find some rules (policy) that knows what 
actions to take for a given state. If we have a model F, we know how actions affect 
future states: most of the time we optimize for a sequence of controls instead of a 
Policy.



Path Integral Policy Improvement

http://www.youtube.com/watch?v=1AR2-OHCxsQ


Path Integral Policy Improvement
Action Selection / Traverse:

Evaluation:

Recall the score function estimator:



MCTS
Trajectory Optimization will also 
have ‘rollout’ and ‘backup’ phases 
like MCTS and RL.

The main difference is how the 
information is backed up.

The model means we have a 
function that describes the 
relationship between these nodes, 
even in a continuous domain.
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What is the ‘Model’?
Practically, we can just say a model is x’ = f(x, u) a function describing the 
transition dynamics of the system.

To ‘have’ a model, we need to know it’s structure or access it in some way; 
sampling, derivatives, etc.

The idea is that with a good model, we can make a plan that works directly on the 
robot.



Indirect vs Direct

A Survey of Numerical Methods for Optimal Control, Anil V. Rao

Optimize for U   Optimize for X



Linear Quadratic Regulator
We will illustrate trajectory optimization 
for a very specific case.

Linear Dynamics System:

Quadratic Costs:

We start with initial state and initial 
control sequence, want better controls.



Linear Quadratic Regulator
For a fixed horizon:

We can solve for the last term!



Linear Quadratic Regulator
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Linear Quadratic Regulator

Good enough?

What about stochastic dynamics?

What about the non-linear case?

We can recompute the previous slides with a approximation of our dynamics and cost.



Iterative LQR

Equations from Sergey Levine



Practical Considerations
iLQR/iLQG might only find very local solutions.

Easier to compute than full Differential Dynamic Programming (2nd order 
dynamics approximations.

The backpass from T -> 0 makes it slow for high value state information to 
propagate (in the non-linear setting) back to our initial state: shorter trajectories 
are much easier to optimize.

Modelling errors (compounded with approximations) can make the system diverge 
from the optimized trajectory… what can we do?



Receding Horizon Control (MPC)
Relating things to MCTS again:

We can compute iLQG (or PiSquared) for a certain 
budget (number of iterations). Each iteration does the 
rollout and evaluation, backpropagating it to the root 
node x0.

We can take the best action u0 and apply it to the 
system.

(video)



Direct Trajectory Optimization (CIO)

Suppose we ‘ignore’ the constraints of physics.

In fact, why don’t we change the dynamical system to make the problem easier!

For a robotics / animation task: robot needs to go somewhere. Jetpacks.



Direct Trajectory Optimization (CIO)



Direct Trajectory Optimization (CIO)
Requires a few bits of prior knowledge about the system:

Contacts are known and defined as part of the optimization parameters

Physics are known and exploited (‘magic’ forces)

At each iteration the optimization:

Get to the target with ‘magic’

Penalize use of ‘magic’



Next Time
Combining Trajectory Optimization and Policy Learning


