Trajectory Optimization

Aravind Rajeswaran and <u>Kendall Lowrey</u> April 30, 2018

Contents

Background information

Trajectory Optimization from the perspective of RL (PiSquared vs MCTS)

Different ways of approaching Trajectory Optimization

LQR

Indirect vs Direct methods

Why Trajectory Optimization?

Black Box Optimization: put in some initial values, get out results (hopefully).

Reinforcement Learning: exploit MDP structure to be more *efficient*.

Model based RL (aka. Trajectory Optimization): exploit information about the model/system/environment to be more efficient than model-free RL.

Assuming we optimize good trajectories, run-time performance depends on quality of model used.

Trajectory Optimization

 $MDP(S, A, R, s' \le P(s,a))$

In trajectory optimization, we also have states and actions, but different notation:

MDP(X, U, C, F(x,u)) where function F is known.

In model free RL, the best we can do is find some rules (policy) that knows what actions to take for a given state. If we have a model F, we know how actions affect future states: most of the time we optimize for a sequence of controls instead of a Policy.

Path Integral Policy Improvement

Path Integral Policy Improvement

Action Selection / Traverse:

Evaluation:

Recall the score function estimator:

$$\nabla_{\theta} \eta(\theta) = \mathbb{E}\left[\sum_{t=0}^{T} \nabla_{\theta} \ln \pi(a_t | s_t) \left(\sum_{t'=t}^{T} \gamma^{t'} r_{t'}\right)\right]$$

for $k = 1 \dots K$ do

$$\boldsymbol{\theta}_{k,i=1...N} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma)$$

$$au_{k,i=1...N} = ext{executepolicy}(oldsymbol{ heta}_{k,i=1...N})$$

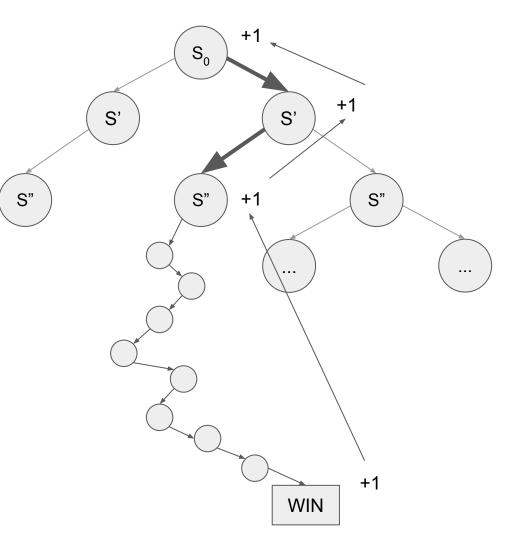
for $i = 1 \dots N$ do for $k = 1 \dots K$ do $| \qquad | \qquad S_{k,i} \equiv S(\boldsymbol{\tau}_{k,i}) = \sum_{j=i}^{N} J(\boldsymbol{\tau}_{j,k})$ $| \qquad P_{k,i} = \frac{e^{-\frac{1}{\lambda}S_{k,i}}}{\sum_{k=1}^{K} [e^{-\frac{1}{\lambda}S_{k,i}}]}$ $\boldsymbol{\theta}_{i}^{new} = \sum_{k=1}^{K} P_{k,i} \boldsymbol{\theta}_{k}$ $\Sigma_{i}^{new} = \sum_{k=1}^{K} P_{k}(\boldsymbol{\theta}_{k,i} - \boldsymbol{\theta})(\boldsymbol{\theta}_{k,i} - \boldsymbol{\theta})^{\mathsf{T}}$ $\boldsymbol{\theta}^{new} = \frac{\sum_{i=0}^{N} (N-i) \boldsymbol{\theta}_{i}^{new}}{\sum_{l=0}^{N} (N-l)} \\ \boldsymbol{\Sigma}^{new} = \frac{\sum_{i=0}^{N} (N-i) \boldsymbol{\Sigma}_{i}^{new}}{\sum_{l=0}^{N} (N-l)}$

MCTS

Trajectory Optimization will also have 'rollout' and 'backup' phases like MCTS and RL.

The main difference is how the information is backed up.

The model means we have a function that describes the relationship between these nodes, even in a continuous domain.



What is the 'Model'?

Practically, we can just say a model is x' = f(x, u) a function describing the transition dynamics of the system.

To 'have' a model, we need to know it's structure or access it in some way; sampling, derivatives, etc.

The idea is that with a good model, we can make a plan that works directly on the robot.

Indirect vs Direct

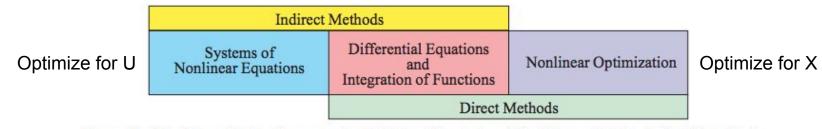


Figure 1: The Three Major Components of Optimal Control and the Class of Methods that Uses Each Component.

We will illustrate trajectory optimization for a very specific case.

Linear Dynamics System:

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$

Quadratic Costs:

$$c(\mathbf{x}_t, u_t) = \|\mathbf{x}_t - \mathbf{x}^*\| + \beta \|u_t\|$$
$$c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

We start with initial state and initial control sequence, want better controls.

For a fixed horizon:

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\ldots)\ldots),\mathbf{u}_T)$$

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t \qquad c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t$$

We can solve for the last term!

$$Q(\mathbf{x}_T, \mathbf{u}_T) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{c}_T$$

$$Q(\mathbf{x}_T, \mathbf{u}_T) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{c}_T$$

$$\nabla_{\mathbf{u}_{T}}Q(\mathbf{x}_{T},\mathbf{u}_{T}) = \mathbf{C}_{\mathbf{u}_{T},\mathbf{x}_{T}}\mathbf{x}_{T} + \mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}}\mathbf{u}_{T} + \mathbf{c}_{\mathbf{u}_{T}}^{T} = 0$$

$$\mathbf{u}_{T} = -\mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}}^{-1}\left(\mathbf{C}_{\mathbf{u}_{T},\mathbf{x}_{T}}\mathbf{x}_{T} + \mathbf{c}_{\mathbf{u}_{T}}\right)$$

$$\mathbf{u}_{T} = \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T}$$

$$\mathbf{K}_{T} = -\mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}}^{-1}\mathbf{C}_{\mathbf{u}_{T},\mathbf{x}_{T}}$$

$$\mathbf{C}_{T} = \begin{bmatrix} \mathbf{C}_{\mathbf{x}_{T},\mathbf{x}_{T}} & \mathbf{C}_{\mathbf{x}_{T},\mathbf{u}_{T}} \\ \mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}} & \mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}} \end{bmatrix}$$

 $\mathbf{k}_T = -\mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T}^{-1}\mathbf{c}_{\mathbf{u}_T}$

. 1

$$Q(\mathbf{x}_T, \mathbf{u}_T) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{c}_T$$

$$\mathbf{u}_{T} = \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T}$$

$$\mathbf{K}_{T} = -\mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}}^{-1}\mathbf{C}_{\mathbf{u}_{T},\mathbf{x}_{T}}$$

$$\mathbf{k}_{T} = -\mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}}^{-1}\mathbf{c}_{\mathbf{u}_{T}}$$

$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix}^{T} \mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix}^{T} \mathbf{c}_{T}$$

$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{V}_{T} \mathbf{x}_{T} + \mathbf{x}_{T}^{T} \mathbf{v}_{T}$$

$$V(\mathbf{x}_T) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix}^T \mathbf{c}_T$$
$$V(\mathbf{x}_T) = \operatorname{const} + \frac{1}{2} \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T$$

$$\mathbf{V}_T = \mathbf{C}_{\mathbf{x}_T, \mathbf{x}_T} + \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{K}_T + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{K}_T$$
$$\mathbf{v}_T = \mathbf{c}_{\mathbf{x}_T} + \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{k}_T + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T} + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{k}_T$$

$$V(\mathbf{x}_T) = \operatorname{const} + \frac{1}{2} \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T \qquad \mathbf{x}_T = \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \mathbf{f}_{T-1}$$

$$V(\mathbf{x}_T) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}$$

$$+ \left[\begin{array}{c} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{array} \right]^T \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1} + \left[\begin{array}{c} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{array} \right]^T \mathbf{F}_{T-1}^T \mathbf{v}_T$$

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{C}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{c}_{T-1} + V(f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}))$$

$$V(\mathbf{x}_T) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{v}_T \mathbf{v$$

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{Q}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{q}_{T-1}$$

$$\mathbf{Q}_{T-1} = \mathbf{C}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1}$$
$$\mathbf{q}_{T-1} = \mathbf{c}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{v}_T$$

1

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{Q}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{q}_{T-1}$$

$$\begin{aligned} \mathbf{Q}_{T-1} &= \mathbf{C}_{T-1} + \mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{F}_{T-1} \\ \mathbf{q}_{T-1} &= \mathbf{c}_{T-1} + \mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{f}_{T-1} + \mathbf{F}_{T-1}^{T} \mathbf{v}_{T} \\ \nabla_{\mathbf{u}_{T-1}} Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) &= \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{x}_{T-1}} \mathbf{x}_{T-1} + \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}} \mathbf{u}_{T-1} + \mathbf{q}_{\mathbf{u}_{T-1}}^{T} = 0 \\ \mathbf{u}_{T-1} &= \mathbf{K}_{T-1} \mathbf{x}_{T-1} + \mathbf{k}_{T-1} \\ \mathbf{k}_{T-1} &= -\mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}}^{-1} \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{x}_{T-1}} \\ \mathbf{k}_{T-1} &= -\mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}}^{-1} \mathbf{q}_{\mathbf{u}_{T-1}} \end{aligned}$$

Backward recursion

for t = T to 1: $\mathbf{Q}_t = \mathbf{C}_t + \mathbf{F}_t^T \mathbf{V}_{t\perp 1} \mathbf{F}_t$ $\mathbf{q}_t = \mathbf{c}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{f}_t + \mathbf{F}_t^T \mathbf{v}_{t+1}$ $Q(\mathbf{x}_t, \mathbf{u}_t) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{q}_t$ $\mathbf{u}_t \leftarrow \arg\min Q(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$ $\mathbf{K}_t = -\mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}^{-1}\mathbf{Q}_{\mathbf{u}_t,\mathbf{x}_t}$ $\mathbf{k}_t = -\mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}^{-1}\mathbf{q}_{\mathbf{u}_t}$ $\mathbf{V}_t = \mathbf{Q}_{\mathbf{x}_t,\mathbf{x}_t} + \mathbf{Q}_{\mathbf{x}_t,\mathbf{u}_t}\mathbf{K}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t,\mathbf{x}_t} + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}\mathbf{K}_t$ $\mathbf{v}_t = \mathbf{q}_{\mathbf{x}_t} + \mathbf{Q}_{\mathbf{x}_t,\mathbf{u}_t}\mathbf{k}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t} + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}\mathbf{k}_t$ $V(\mathbf{x}_t) = \text{const} + \frac{1}{2}\mathbf{x}_t^T \mathbf{V}_t \mathbf{x}_t + \mathbf{x}_t^T \mathbf{v}_t$

Forward recursion

for
$$t = 1$$
 to T :
 $\mathbf{u}_t = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$
 $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$

Good enough?

$$\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$$

What about stochastic dynamics?

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}\left(\mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t, \Sigma_t\right)$$

What about the non-linear case?

We can recompute the previous slides with a approximation of our dynamics and cost.

Iterative LQR

$$\begin{split} f(\mathbf{x}_{t}, \mathbf{u}_{t}) &\approx f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) + \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix} \\ c(\mathbf{x}_{t}, \mathbf{u}_{t}) &\approx c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) + \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}^{T} \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}}^{2} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}^{T} \\ c(\mathbf{x}_{t}, \mathbf{u}_{t}) &\approx c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix} \\ \\ \text{until convergence:} & \bar{f}(\delta \mathbf{x}_{t}, \delta \mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix} \\ \mathbf{x}_{t} = \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \\ \mathbf{x}_{t} = \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \\ \mathbf{x}_{t} = \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \\ \mathbf{x}_{t} = \nabla_{\mathbf{x}_{t$$

Run LQR backward pass on state $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ and action $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$ Run forward pass with real nonlinear dynamics and $u_t = \hat{u}_t + K_t(x_t - \hat{x}_T) + \alpha k_t$ Update $\hat{\mathbf{x}}_t$ and $\hat{\mathbf{u}}_t$ based on states and actions in forward pass

Equations from Sergey Levine

Practical Considerations

iLQR/iLQG might only find very local solutions.

Easier to compute than full Differential Dynamic Programming (2nd order dynamics approximations.

The backpass from T -> 0 makes it slow for high value state information to propagate (in the non-linear setting) back to our initial state: shorter trajectories are much easier to optimize.

Modelling errors (compounded with approximations) can make the system diverge from the optimized trajectory... what can we do?

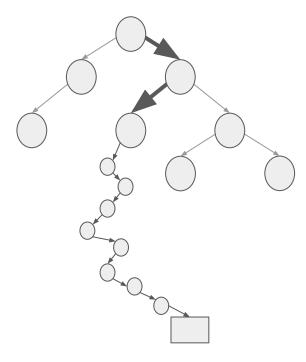
Receding Horizon Control (MPC)

Relating things to MCTS again:

We can compute iLQG (or PiSquared) for a certain budget (number of iterations). Each iteration does the rollout and evaluation, backpropagating it to the root node x_0 .

We can take the best action u_0 and apply it to the system.

(video)



Direct Trajectory Optimization (CIO)

Suppose we 'ignore' the constraints of physics.

 $f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t + \mathbf{f}_t$

In fact, why don't we change the dynamical system to make the problem easier!

For a robotics / animation task: robot needs to go somewhere. Jetpacks.



Direct Trajectory Optimization (CIO)

Requires a few bits of prior knowledge about the system:

Contacts are known and defined as part of the optimization parameters

Physics are known and exploited ('magic' forces)

At each iteration the optimization:

Get to the target with 'magic'

Penalize use of 'magic'

Next Time

Combining Trajectory Optimization and Policy Learning