
Trajectory Optimization
Aravind Rajeswaran and Kendall Lowrey

April 30, 2018

Contents
Background information

Trajectory Optimization from the perspective of RL (PiSquared vs MCTS)

Different ways of approaching Trajectory Optimization

LQR

Indirect vs Direct methods

Why Trajectory Optimization?
Black Box Optimization: put in some initial values, get out results (hopefully).

Reinforcement Learning: exploit MDP structure to be more efficient.

Model based RL (aka. Trajectory Optimization): exploit information about the
model/system/environment to be more efficient than model-free RL.

Assuming we optimize good trajectories, run-time performance depends on
quality of model used.

Trajectory Optimization
MDP(S, A, R, s’<-P(s,a))

In trajectory optimization, we also have states and actions, but different notation:

MDP(X, U, C, F(x,u)) where function F is known.

In model free RL, the best we can do is find some rules (policy) that knows what
actions to take for a given state. If we have a model F, we know how actions affect
future states: most of the time we optimize for a sequence of controls instead of a
Policy.

Path Integral Policy Improvement

http://www.youtube.com/watch?v=1AR2-OHCxsQ

Path Integral Policy Improvement
Action Selection / Traverse:

Evaluation:

Recall the score function estimator:

MCTS
Trajectory Optimization will also
have ‘rollout’ and ‘backup’ phases
like MCTS and RL.

The main difference is how the
information is backed up.

The model means we have a
function that describes the
relationship between these nodes,
even in a continuous domain.

S0

S’

S”

......

S”S”

S’

WIN
+1

+1

+1

+1

What is the ‘Model’?
Practically, we can just say a model is x’ = f(x, u) a function describing the
transition dynamics of the system.

To ‘have’ a model, we need to know it’s structure or access it in some way;
sampling, derivatives, etc.

The idea is that with a good model, we can make a plan that works directly on the
robot.

Indirect vs Direct

A Survey of Numerical Methods for Optimal Control, Anil V. Rao

Optimize for U Optimize for X

Linear Quadratic Regulator
We will illustrate trajectory optimization
for a very specific case.

Linear Dynamics System:

Quadratic Costs:

We start with initial state and initial
control sequence, want better controls.

Linear Quadratic Regulator
For a fixed horizon:

We can solve for the last term!

Linear Quadratic Regulator

Linear Quadratic Regulator

Linear Quadratic Regulator

Linear Quadratic Regulator

Linear Quadratic Regulator

Linear Quadratic Regulator

Linear Quadratic Regulator

Good enough?

What about stochastic dynamics?

What about the non-linear case?

We can recompute the previous slides with a approximation of our dynamics and cost.

Iterative LQR

Equations from Sergey Levine

Practical Considerations
iLQR/iLQG might only find very local solutions.

Easier to compute than full Differential Dynamic Programming (2nd order
dynamics approximations.

The backpass from T -> 0 makes it slow for high value state information to
propagate (in the non-linear setting) back to our initial state: shorter trajectories
are much easier to optimize.

Modelling errors (compounded with approximations) can make the system diverge
from the optimized trajectory… what can we do?

Receding Horizon Control (MPC)
Relating things to MCTS again:

We can compute iLQG (or PiSquared) for a certain
budget (number of iterations). Each iteration does the
rollout and evaluation, backpropagating it to the root
node x0.

We can take the best action u0 and apply it to the
system.

(video)

Direct Trajectory Optimization (CIO)

Suppose we ‘ignore’ the constraints of physics.

In fact, why don’t we change the dynamical system to make the problem easier!

For a robotics / animation task: robot needs to go somewhere. Jetpacks.

Direct Trajectory Optimization (CIO)

Direct Trajectory Optimization (CIO)
Requires a few bits of prior knowledge about the system:

Contacts are known and defined as part of the optimization parameters

Physics are known and exploited (‘magic’ forces)

At each iteration the optimization:

Get to the target with ‘magic’

Penalize use of ‘magic’

Next Time
Combining Trajectory Optimization and Policy Learning

