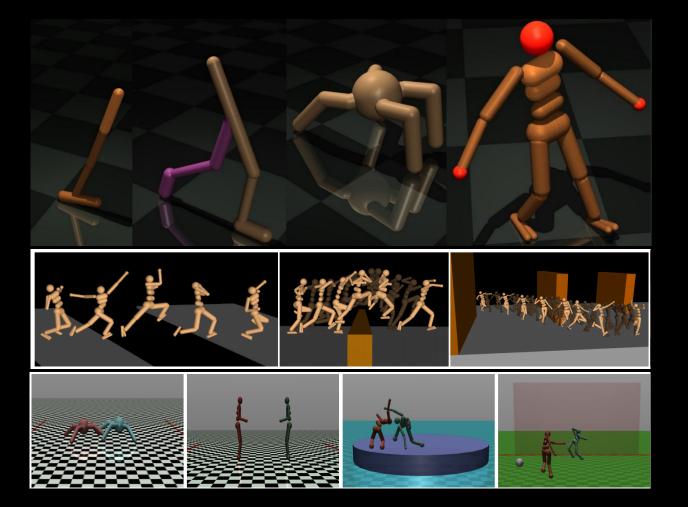


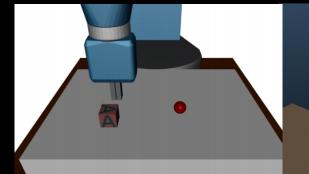
Vikash Kumar DeepRL Course Guest Lecture

Deep Reinforcement Learning

Vikash Kumar

Deep RL for continuous control





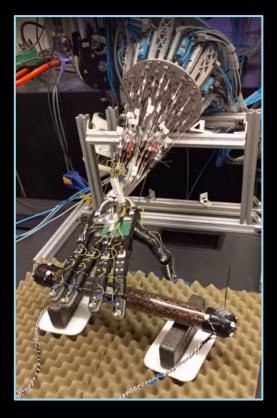
Question

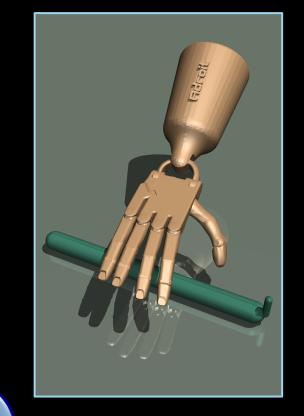
- 1) What's new?
- 2) Gap/assumptions between simulations and reality?
- 3) Can the wall clock time required for skill acquisition on <u>physical hardware</u> be reduced to practical time scales?

Question

- 1) What's new?
- 2) Gap/assumptions between simulations and reality?
- 3) Can the wall clock time required for skill acquisition on <u>physical hardware</u> be reduced to practical time scales?

Hardware: ADROIT MANIPULATION PLATFORM





24 DoF hand

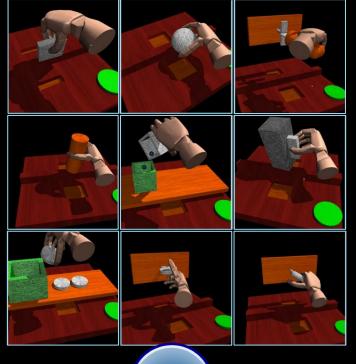
- Low friction & stiction
- Sensing
 - Joint angle (500hz)
 - Finger tip touch (500hz)
 - Tendon length (9khz)
 - Tendon tension (9khz)

Software

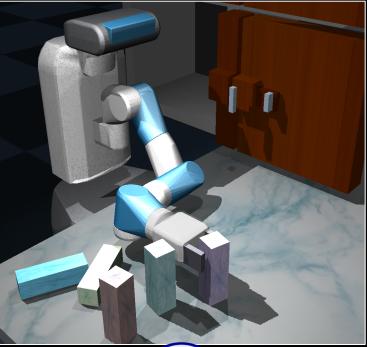
- Fast and efficient simulators (mujoco + mujoco_py)
- Standard Algorithmic APIs (Baselines, RLlab, NPG)
- Fast and easy switch between software and hardware
- Physically realistic demonstrations (mujoco-vr)

Software: Physically Realistic Demonstrations

ΜυЈοСο ΗΑΡΤΙΧ

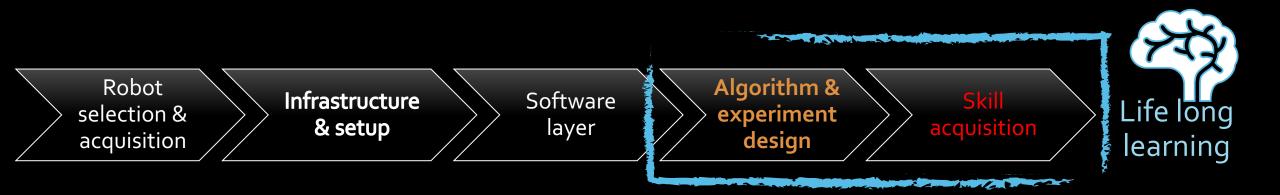


MuJoCo-VR



Question

- 1) What's new?
- 2) Gap/assumptions separating simulations & reality?
- 3) Can the wall clock time required for skill acquisition on <u>physical hardware</u> be reduced to practical time scales?

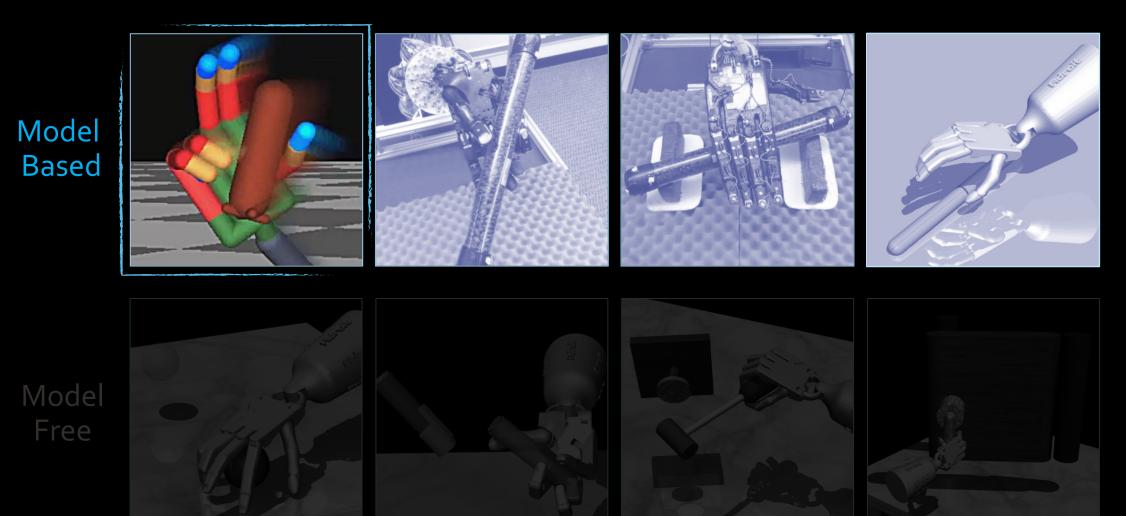


Algorithmic Paradigms

Model Based

Model Free

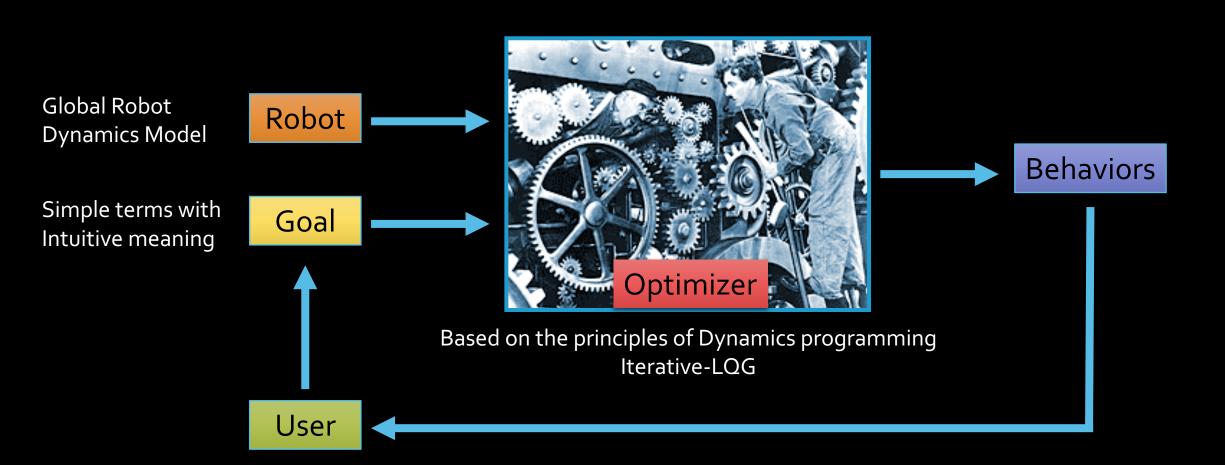
Algorithmic Paradigms: Known Global Model



Approaches

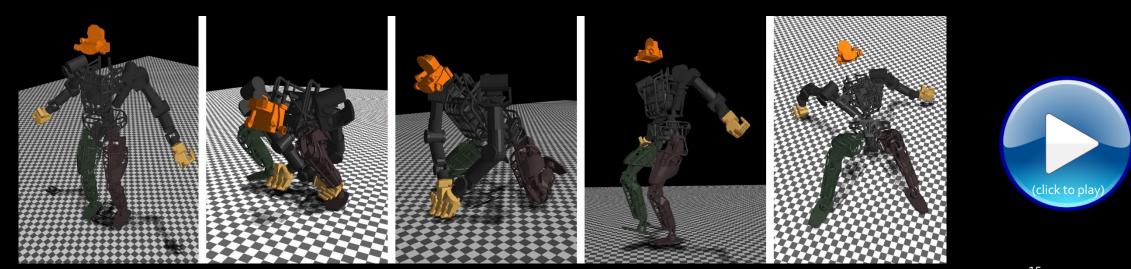
- <u>Traditional approach</u>: Plans movements
 - Manual scripting
 - Inverse kinematics
- <u>Modern approaches</u>: Plans behaviors
 - Optimal control
 - Developed to control slow evolving chemical plants
 - Gradient is my signal
 - High level goal directed reasoning
 - Reinforcement Learning
 - Noise is my signal
 - Sparse goals
 - Computational budgets

Optimal Control: Trajectory Optimization



DARPA Robotics challenge

- Fused behaviors
 - Dynamic full body stabilization
 - Head/ hand reach target
 - Head/ hand look



Team :: Tom Erez, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svet Kolev, Emo Todorov

Optimal Control: Model Predictive Control

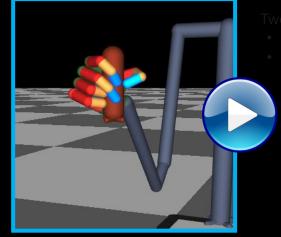
- 1. At time step t, solve a trajectory optimization problem for the desired behavior
- 2. Execute initial part of the solution
- 3. Re-evaluate and update your plan

There is always a plan, the plan is re-optimized all the time, only the initial portion is ever executed.

Optimal Control: Model Predictive Control

- Reusable machinery
- Real time behavior generation
- Behaviors encoded as simple cost terms
 - > Manipulation
 - Distance from goal configuration
 - Regularization (controls and velocities)
 - Distance between hand and object (<10^3)
 - Typing
 - Desired key press
 - Distance between key-finger tip
 - Autocorrect
 - Regularization (control and velocities)

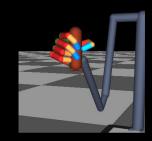
Yuval Tassa, DeepMind

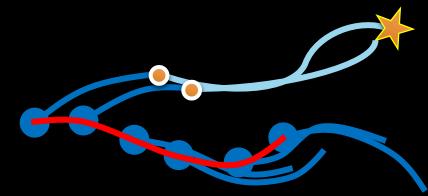


Why MPC works ?

- 1. Fast premature updates (better than slow converged updates)
 - Optimum is never achieved. Why solve for it?
 - Drags the solution closer to the minimum with each update

- 2. Partial plans
 - Partial policy for a shorter horizon





Challenges with MPC on hardware

1. Sensing

- Space constraints
- Low quality sensors
- Mocap occlusion and confusion
- Partial observability

2. Calibration and Estimation

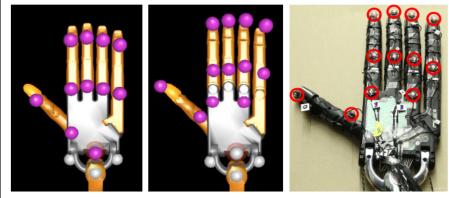
- Manual calibration jigs ineffective
- Optimization misguided

3. Modelling and identification

• Never be able to replicate reality

Visak, C. UW/ GTech.

STAC: Simultaneous tracking & calibration

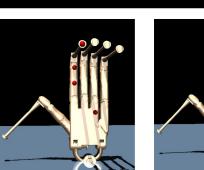


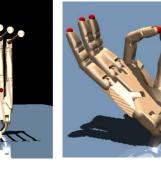
Kinematic Extensions

(a) initial pos

(b) calibrated

(c) ground truth

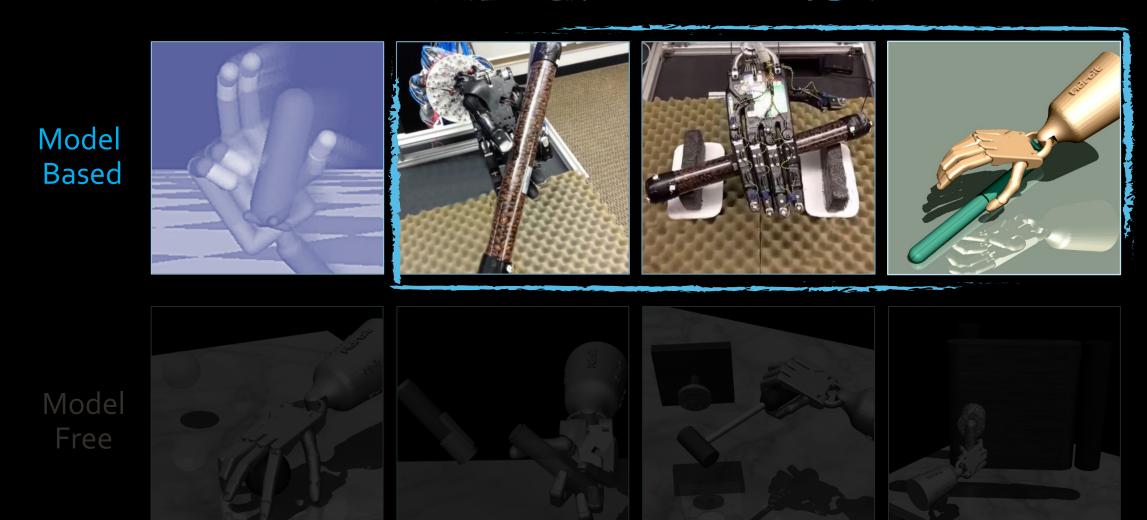




(a) Before Identifications

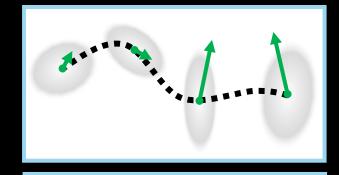
(b) Identified site locations

Algorithmic Paradigms: Learned Partial Model



Learning Partial Models From Experience

Global Physics Model



State and the state of the stat

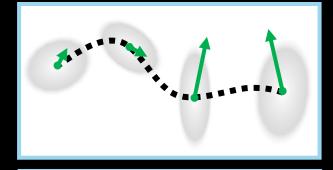
Partial model

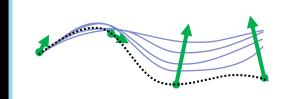
- Time-varying linear model
- Parameterized directly by sensor data
- Adapt as we go

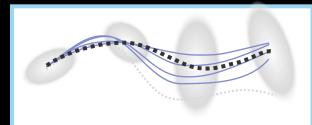
Optimal control with learned local models

- 1: initialize $p(\mathbf{u}_t | \mathbf{x}_t)$
- 2: for iteration k = 1 to K do
- 3: run $p(\mathbf{u}_t | \mathbf{x}_t)$ to collect trajectory samples $\{\tau_i\}$
- 4: fit dynamics $p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t)$ to $\{\tau_j\}$ using linear regression with GMM prior
- 5: fit $p = \arg\min_p E_{p(\tau)}[\ell(\tau)]$ s.t. $D_{\mathrm{KL}}(p(\tau) \| \hat{p}(\tau)) \le \epsilon$
- 6: **end for**

Best Manipulation Paper Award, ICRA 2016







Optimal control with learned local models

sample efficient

- effective with intermittent contacts
- effective on physical hardware

Best Manipulation Paper Award, ICRA 2016

Learning from Experience and Imitation

 $\alpha_{3}||q_{t}^{pos} - q^{pos*}||^{2} + \alpha_{4}||q_{t}^{rot} - q^{rot*x}||^{2}$

Observed Behaviors

- Random exploration with no progress
- Object flies away form manipulatable workspace
- Interaction with no progress (local minima)

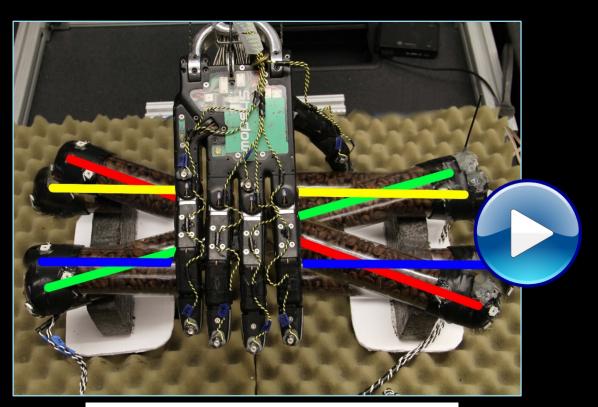
- Reward delayed in the future
- Ineffective exploration

Poor sample complexity

Reducing Sample Complexity with Demos

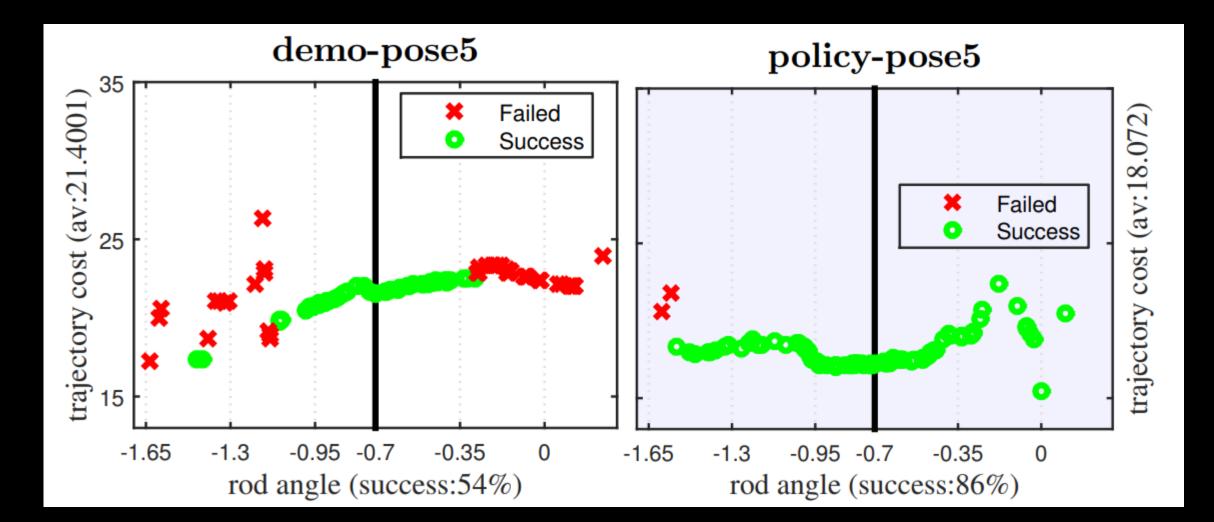
Use demonstrations collected in VR to guide exploration in task-relevant part of the state space

Expert demonstration (collected with action noise)



 $\ell(\mathbf{x}_t, \mathbf{u}_t) = ||\mathbf{q}_t - \hat{\mathbf{q}}_t||^2 + 0.1||\mathbf{u}_t||^2 + 50||q_t^{posZ} - 0.12||^2,$ Imitation + synthesis

Surpassing experts

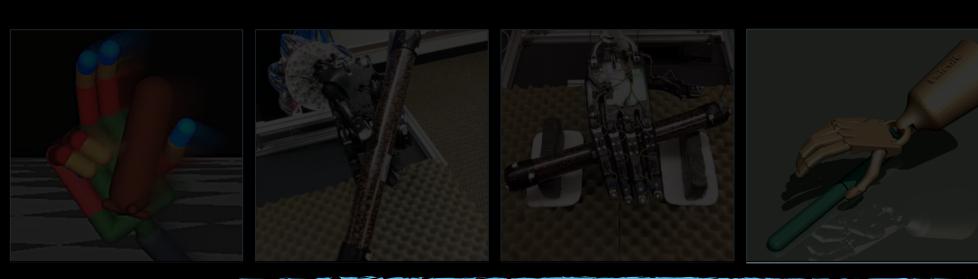


Model Based Algorithmic Paradigm

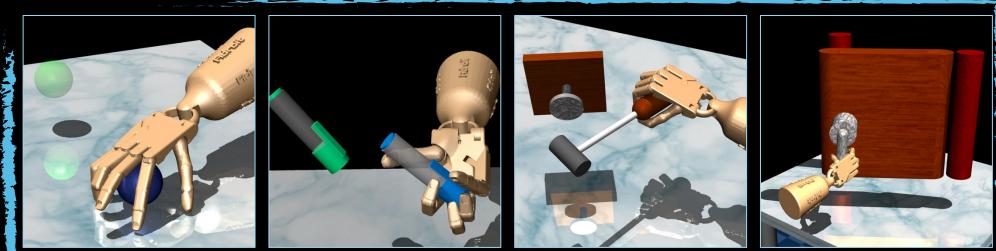
- Sample efficient
- Effective with intermittent contact rich behaviors
- Resulting policies are local
- Effective only if test distribution and training distribution are close
- Reward needs to be differentiable
- Ineffective with sparse reward

Algorithmic Paradigms

Model Based



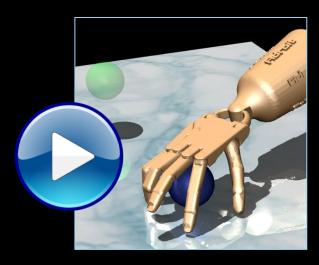
Model Free

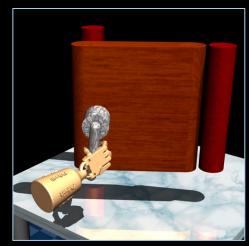


Behavior Cloning (# demonstrations: 25)

$$\text{maximize}_{\theta} \sum_{(s,a^*) \in \rho_D} \ln \pi_{\theta}(a^*|s)$$

- Large # of demos needed for high DoF
- State distribution mismatch
- Leads to compounding error





Behavior Cloning with RL (# demonstrations: 25)

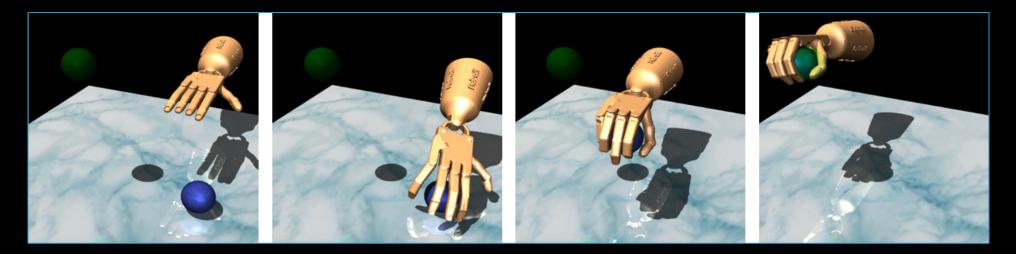
- Behavior cloning doesn't work well by itself
 - Solving for the wrong objective
 - tries to produce optimal action under demo state distribution instead of induced state distribution
 - Compounding errors
 - Cascading failures
- Good initialization for RL fine-tuning

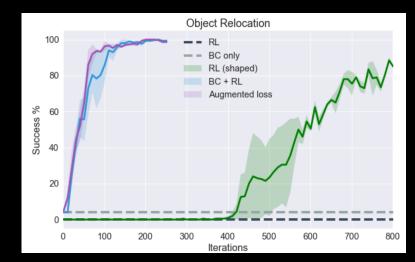
Auxiliary Objective

- Demo contains so much more information than the BC initialized network
- Different parts of the demonstration data is useful in different learning stages

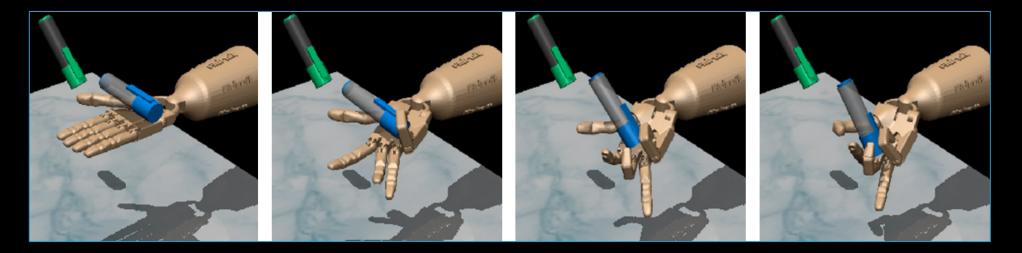
$$g_{aug} = \sum_{(s,a)\in\rho_{\pi}} \nabla_{\theta} \ln \pi_{\theta}(a|s) A^{\pi}(s,a) + \sum_{(s,a^*)\in\rho_D} \nabla_{\theta} \ln \pi_{\theta}(a^*|s) w(s,a^*)$$

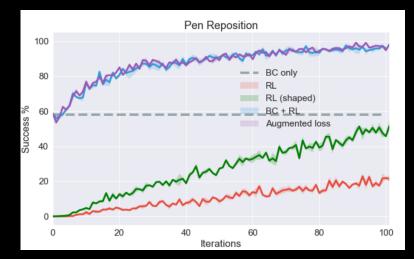
Tasks: Relocation



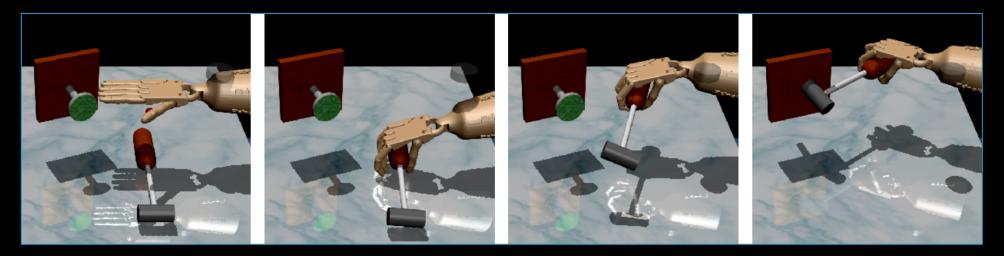


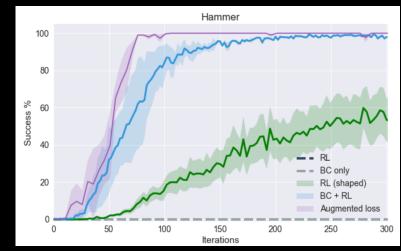
Tasks: in-hand manipulation



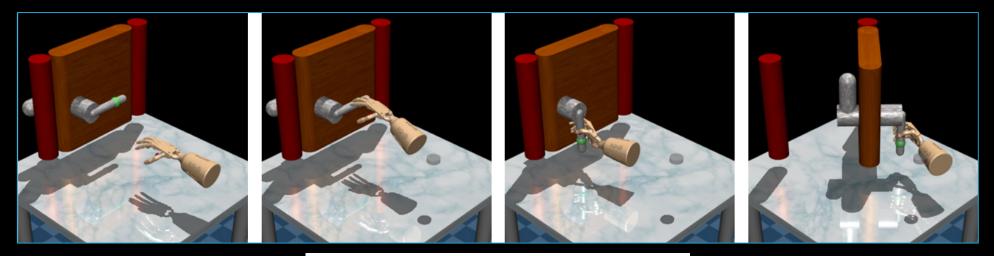


Tasks: Tool usage

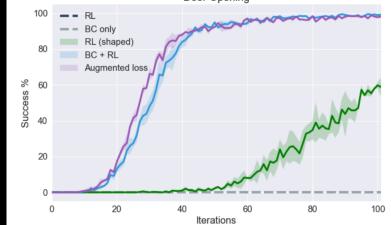




Tasks: Environment interaction



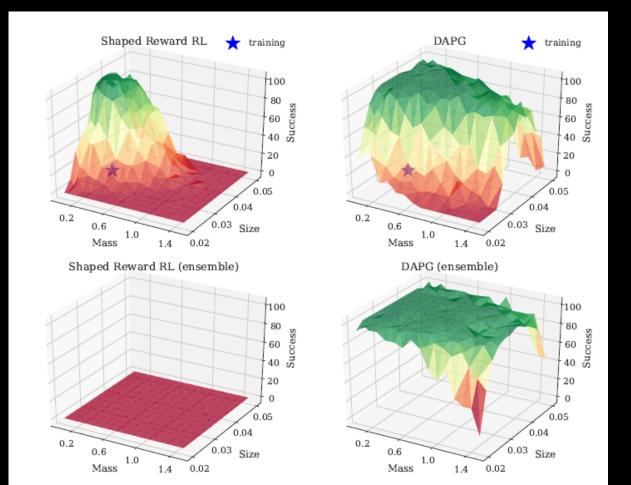
Door Opening



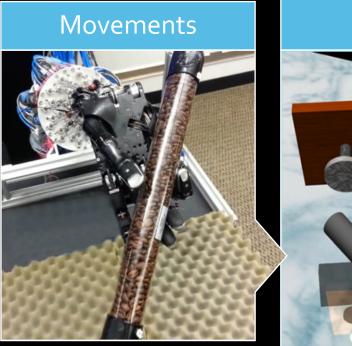
Model-free paradigm: results

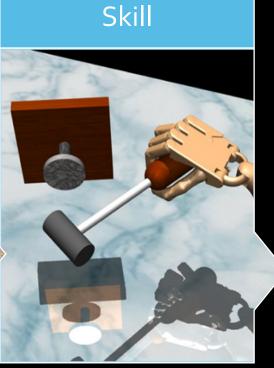
Method	Ours		RL (sh)		RL(sp)	
Task	N	Hours	N	Hours	N	Hours
Obj Relocation	52	5.77	880	98	∞	∞
Hammer	55	6.1	448	50	∞	∞
Door	42	4.67	146	16.2	∞	∞
Pen	30	3.33	864	96	2900	322

Model-free paradigm: results



Future Directions





Bag of Skills

- Adaptation
- Transfer
- Sequencing
- Composition

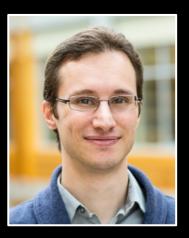
End to End

- Vision
- Haptic
- Multi-agent
- Human-in-loop
- NLP

Key Insights

Caching & Recall

Collaborators & Institutions



Thank you (homes.cs.washington.edu/~vikash/)

